(1) \(f\) has an interior discontinuity at \(x = -\frac{1}{2}\).
\(f\) is piecewise smooth.

(b) Because of the discontinuities, the convergence will be like \(1/n\).

(c) The sine series represents the periodic extension of the odd extension of \(f\).

Again discontinuities and \(1/n\) convergence.

(d) Here we have the periodic extension of the even extension. We see that the extended function is continuous but the extended derivative is not, so the convergence is like \(1/n^2\).

(2) (a) The weight function is \(\delta(x)\), so \(\int_{-\infty}^{\infty} \delta(x) \, dx = 0\).

(b) We construct the Rayleigh quotient.

\[\psi(k \psi')' + \lambda \psi^2 = 0 \]
\[(\psi k \psi')' - k \psi^2 + \lambda \psi^2 = 0. \]
(2) (b) continued. We integrate over \([0,1]\) and use the boundary conditions to get
\[
\lambda = \frac{\int_0^1 kw'^2 \, dx}{\int_0^1 kw^2 \, dx} > 0.
\]
This shows that \(\lambda\) is non-negative. For \(\lambda\) to be zero, we would have to have \(w' = 0\), hence \(w = \text{constant}\), but if \(w(1) = 0\) \(\Rightarrow \text{constant} = 0\) \(\Rightarrow \lambda > 0\).

(c) The \(\psi_n\)'s are appropriate eigenfunctions for this problem, so we try
\[
T(x,t) = \sum_{n=1}^{\infty} c_n(t) \psi_n(x).
\]
We substitute into the equation to get
\[
\sigma(x) \sum_{n=1}^{\infty} \frac{d}{dt} c_n(t) \psi_n(x) = \sum_{n=1}^{\infty} c_n(t) \frac{d}{dx}(x \frac{d\psi_n}{dx})
\]
so
\[
\sum_{n=1}^{\infty} \frac{d}{dt} c_n(t) \psi_n(x) = -\sigma(x) \sum_{n=1}^{\infty} \lambda_n c_n(t) \psi_n(x).
\]
We choose coefficients to get
\[
\frac{d c_n}{dt} = -\lambda_n c_n(t)
\]
and
\[
c_n(t) = c_n(0) e^{-\lambda_n t}.
\]
But
\[
T(x,0) = f(x) = \sum_{n=1}^{\infty} c_n(0) \psi_n(x),
\]
so
\[
c_n(0) = \frac{\int_0^1 \sigma(x) \psi_n(x) f(x) \, dx}{\int_0^1 \sigma(x)[\psi_n(x)]^2 \, dx}.
\]
If you described this process carefully rather than carrying it out, you will get full credit.
(3) The solutions will be oscillatory in y, and we can see from the boundary conditions that the appropriate y-functions are $\sin \left(\frac{\pi y}{L} \right)$. We try

$$\Phi(x, y) = \sum_{n=1}^{\infty} a_n(x) \sin \left(\frac{n\pi y}{L} \right).$$

We substitute this in the equation to get

$$\sum_{n=1}^{\infty} \frac{d^2}{dx^2} a_n(x) \sin \left(\frac{n\pi y}{L} \right) + \sum_{n=1}^{\infty} \left(-\frac{n^2 \pi^2}{L^2} \right) a_n \sin \left(\frac{n\pi y}{L} \right) = 0.$$

We balance coefficients: $\frac{d^2}{dx^2} a_n(x) - \frac{n^2 \pi^2}{L^2} a_n = 0$.

The solution which vanishes at $x = 0$ is $a_n \sin \left(\frac{n\pi x}{L} \right)$. Then

$$\Phi(x, y) = \sum_{n=1}^{\infty} a_n \sin \left(\frac{n\pi x}{L} \right) \sin \left(\frac{n\pi y}{L} \right).$$

We impose the inhomogeneous BC at $x = a$:

$$\frac{d\Phi}{dx}(a, y) = \sum_{n=1}^{\infty} \frac{\pi}{L} a_n \cos \left(\frac{n\pi a}{L} \right) \sin \left(\frac{n\pi y}{L} \right) = \Phi_0 \sin \left(\frac{\pi y}{L} \right).$$

We balance coefficients to get $a_n = 0$, $n \neq 3$ and

$$\frac{3\pi}{L} a_3 \cos \left(\frac{3\pi a}{L} \right) = \Phi_0.$$

So

$$a_3 = \frac{\Phi_0}{(3\pi a) \cos \left(\frac{3\pi a}{L} \right)}.$$

And

$$\Phi(x, y) = \Phi_0 \frac{\sin \left(\frac{3\pi x}{L} \right)}{(3\pi a \cos \left(\frac{3\pi a}{L} \right)) \sin \left(\frac{3\pi y}{L} \right)}.$$
We transform the equation using the first hint.
\[\frac{d^2 \tilde{\phi}}{dy^2} - k^2 \tilde{\phi} = \pi e^{-\frac{1}{4k^2}} e^{-y}. \]

We look for a particular solution \(\tilde{\phi}_p = Ce^{-y} \):
\[Ce^{-y} - k^2 e^{-y} = \pi e^{-\frac{1}{4k^2}} e^{-y} \]
\[C = \frac{\pi e^{-\frac{1}{4k^2}}}{1 - k^2}. \]

The solution of the homogeneous equation is \(A e^{\frac{1}{2}ky} + Be^{-\frac{1}{2}ky} \). The solution is then
\[\tilde{\phi} = A e^{\frac{1}{2}ky} + B e^{-\frac{1}{2}ky} + \frac{\pi e^{-\frac{1}{4k^2}}}{1 - k^2} e^{-y}. \]

To satisfy the condition \(\phi(x_0) = 0 \), \(A = 0 \). The other condition is \(\frac{\partial \phi}{\partial y} \bigg|_{y=0} = 0 \), so \(B = \frac{\pi e^{-\frac{1}{4k^2}}}{k^2} \).

Then \(\tilde{\phi}(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2k^2}y} e^{ix} \left(e^{\frac{1}{2}ky} - e^{-\frac{1}{2}ky}\right)}{k^2 - 1} dk \).

Then \(\phi(r,\phi) = \sum_{n=0}^{\infty} C_n \frac{P_n(\cos \phi)}{r^{n+1}} \).

The boundary condition is \(\phi_0 \bigg|_{\theta} = \theta \big(\cos^2 \phi \big) \).

We have \(\lambda = P_0(\cos \phi) \) and \(b(\cos \phi) = \frac{b}{3} \left[P_0 + 2P_2 \right] \)

Then \(\frac{\partial \phi}{\partial r}(r,\phi) = -\sum_{n=0}^{\infty} \int_{0}^{\pi} (n+1) C_n \frac{P_n'(\cos \theta)}{r^{n+2}} \frac{\sin \theta}{\sin \phi} = \frac{b}{6} \frac{1}{6} P_0 \frac{a}{a + \frac{2b}{3} P_2} \).

We believe coefficients: \(C_n = 0 \), for \(n \neq 0,2 \)
\[-\frac{\cos}{a^2} - \frac{\cos}{a^2} \left(1 + \frac{b}{3} \right) - \frac{3(1 + \frac{b}{3})}{a^2} = \frac{4b}{a} \quad \text{for } a = \frac{2b}{3} \]
\[b = \frac{4b}{a} \frac{P_0(\cos \phi)}{1 + \frac{b}{3}} \frac{1}{r^2} \]
\[\text{max rate of dropoff is for } b = -3. \]
We substitute the expansion into the equation:

\[\sum_{n=1}^{\infty} \frac{1}{r} \frac{d}{dr} \left[r \frac{d}{dr} J_0 (\alpha_n \frac{r}{a}) \right] \alpha_n (z) + \sum_{n=1}^{\infty} \frac{d^2 \alpha_n}{dz^2} J_0 (\alpha_n \frac{r}{a}) = 0. \]

From the hint we have

\[\frac{1}{r} \frac{d}{dr} \left[r \frac{d}{dr} J_0 (\alpha_n \frac{r}{a}) \right] = -\frac{\alpha_n^2}{a^2} J_0 (\alpha_n \frac{r}{a}). \]

Now we can balance coefficients to get

\[\frac{d^2 \alpha_n}{dz^2} - \frac{\alpha_n^2}{a^2} \alpha_n = 0. \]

The solution is

\[\alpha_n (z) = A_n e^{-\frac{\alpha_n z}{a}} + B_n e^{\frac{\alpha_n z}{a}}. \]

The second term blows up as \(z \to \infty \), so we require \(B_n = 0 \). Then

\[\Phi (r, z) = \sum_{n=1}^{\infty} A_n e^{-\frac{\alpha_n z}{a}} J_0 (\alpha_n \frac{r}{a}). \]

Finally we impose the BC at \(z = 0 \):

\[\Phi (r, 0) = \sum_{n=1}^{\infty} A_n J_0 (\alpha_n \frac{r}{a}) = f(0) = \sum_{n=1}^{\infty} f_n J_0 (\alpha_n \frac{r}{a}). \]

We balance coefficients to get \(A_n = f_n \).

Then

\[\Phi (r, z) = \sum_{n=1}^{\infty} f_n e^{-\frac{\alpha_n z}{a}} J_0 (\alpha_n \frac{r}{a}). \]