ME 441 Example Problem Set3

3.3-3 A uniform bar element of length L has a node at each end and a node at the middle, as shown. Determine the element stiffness matrix that operates on nodal d.o.f. u_1, u_2, and u_3.

Problem 3.3-3

3.4-1 The cantilever beam shown is tip-loaded by moment M. Use beam theory to compute displacement components of points D, E, and F. Then regard these results as nodal displacements, and use them to compute stresses $\{\sigma\} = [E][B]\{d\}$ in elements defined as follows. Assume that $\nu = 0$. What becomes of the ratio τ_{xy}/σ_x as L/c becomes large?
(a) A CST element whose nodes are A, D, and F.
(b) A CST element whose nodes are A, D, and C.

Problem 3.4-1

3.6-5 Let axes x and y originate at node 1 of a Q4 element, as shown. Write shape functions appropriate to this choice of axes.

Problem 3.6-5

Extra Problem: Consider a plate of length L and width W subjected to distributed compression loads at both ends, each equal to $p(W^2-y^2)$ where y denotes vertical position. You decided that you will use 4 Q4 elements in your finite element approach. Find consistent nodal forces required for solving the problem. (Using geometrical symmetry will help a lot!)