Faculty

Douglas H. Kelley

Assistant Professor, Department of Mechanical Engineering
PhD, University of Maryland, 2009

218 Hopeman
(585) 275-7769
Fax: (585) 256-2509
d.h.kelley@rochester.edu

Website

I study the space- and time-dynamics of fluid flows and the materials being mixed in them, with a variety of applications.

Courses: ME121 and ME437

Research Overview

I'm interested in how the performance of liquid metal batteries, an emerging technology for grid-scale energy storage, depends on transport in their liquid layers. I'm interested in how ecological dynamics of marine phytoplankton depend on mixing by ocean currents. I'm interested in how Earth's magnetic field arises out of mixing and waves in our planet's outer core. And I'm interested in the fundamental physics of mixing, particularly Lagrangian Coherent Structures.

Representative Publications

  • D. H. Kelley, M. R. Allshouse, and N. T. Ouellette. Lagrangian Coherent Structures separate dynamically distinct regions. To appear in Phys. Rev. E.
  • R. M. Lee, D. H. Kelley, K. R. Nordstrom, N. T. Ouellette, and W. Losert. Quantifying stretching and rearrangement in epithelial sheet migration. New J. Phys. 15 025036 (2013).
  • D. H. Kelley and N. T. Ouellette. Emergent dynamics of laboratory insect swarms. Sci. Rep. 3 01073 (2013).
  • D. H. Kelley and N. T. Ouellette. Spatiotemporal persistence of spectral fluxes in two-dimensional flow. Phys. Fluids. 23 115101 (2011).
  • H. Matsui, M. M. Adams, D. H. Kelley, S. A. Triana, D. S. Zimmerman, B. A. Buffett, and D. P. Lathrop. Numerical and experimental investigations of shear- driven inertial oscillations in an Earth-like geometry. Phys. Earth Plan. Int. 188 194–202 (2011).
  • A. de Chaumont Quitry, D. H. Kelley, and N. T. Ouellette. Mechanisms driving shape distortion in two-dimensional flow. Europhys. Lett. 94 64006 (2011).
  • D. H. Kelley and N. T. Ouellette. Separating stretching from folding in fluid mixing. Nature Phys. 7 477-480 (2011).
  • S. T. Merrifield, D. H. Kelley, and N. T. Ouellette. Scale-dependent statistical geometry in two-dimensional flow. Phys. Rev. Lett. 104 254501 (2010).

Courses Offered (subject to change)

  • ME 437  Incompressible Flow