Problem Set 5
ME 444: Continuum Mechanics
D. H. Kelley
Due 22 October 2013.

1. Given the flow

\[x_1 = X_1 + 3X_2 \]
\[x_2 = X_2 \]
\[x_3 = X_3 \]

in the \(\{\hat{e}_1, \hat{e}_2, \hat{e}_3\} \) basis,
(a) Find the deformation gradient \(F \).
(b) Find the right Cauchy-Green strain tensor \(C \).
(c) Find the eigenvalues and eigenvector of \(C \).
(d) Find the matrix of the stress tensor \(U \).
(e) Find its inverse \(U^{-1} \).
(f) Find the rotation tensor \(R \).
(g) Find the left Cauchy-green strain tensor \(B \).

2. Given the velocity field

\[v_1 = k(x_2 - 2)^2x_3 \]
\[v_2 = -x_1x_2 \]
\[v_3 = kx_1x_3, \]

for an incompressible fluid in the \(\{\hat{e}_1, \hat{e}_2, \hat{e}_3\} \) basis, determine the value of the constant \(k \) such that the equation of mass conservation is satisfied.

3. Consider the deformation

\[x_1 = 3X_3 \]
\[x_2 = -X_1 \]
\[x_3 = -2X_2 \]

in the \(\{\hat{e}_1, \hat{e}_2, \hat{e}_3\} \) basis.
(a) Find the ratio of deformed volume to initial volume.
(b) Find the rotation tensor \(R \).
(c) Find the left Cauchy-Green strain tensor \(B \).
(d) Find the stretch of a material element currently along the \(\hat{e}_3 + \hat{e}_1 \) direction.
(e) Find the initial angle between material elements currently along the \(\hat{e}_3 + \hat{e}_1 \) and \(2\hat{e}_3 + \hat{e}_2 \) directions.

4. The stress distribution in a certain body is given by

\[T = \begin{bmatrix}
0 & 100x_1 & -100x_2 \\
100x_1 & 0 & 0 \\
-100x_2 & 0 & 0
\end{bmatrix} \text{ MPa} \]

in Cartesian coordinates. Find the stress vector acting on a plane that passes through the point \(x = [1/2, \sqrt{3}/2, 3] \) and is tangent to the circular cylindrical surface \(x_1^2 + x_2^2 = 1 \).