(1) We substitute \(T = F(x) G(t) \) into the equation to get
\[
(1 + \alpha x) F(x) \frac{dG}{dt} + u G(t) \frac{dF}{dx} = D G(t) \frac{d^2F}{dx^2}.
\]
We divide by \(D G \) and integrate, to get
\[
\int \frac{1}{D} \frac{dG}{dt} \, dx = -\int \frac{1}{D} u \frac{dF}{dx} \, dx + \int \frac{1}{D(1 + \alpha x)} F G(t) \, dx.
\]
The last-hand side depends only on \(t \), and the right-hand side only on \(x \), so the separation has worked. Each side is equal to the same constant, which we call \(-\lambda \). Then
\[
\text{Eqn. 1:} \quad \frac{dG}{dt} = -\lambda D G
\]
\[
\text{Eqn. 2:} \quad \frac{d^2F}{dx^2} - \frac{u}{D} \frac{dF}{dx} + \lambda (1 + \alpha x) F = 0
\]

The boundary conditions on \(F \) come from the homogeneous boundary conditions on \(T \):
\[
\frac{dF}{dx}(0) = 0, \quad F(L) = 0.
\]

(2) (a) The functions are all continuous on the base interval, so any discontinuities of the extended periodic function must show up at the points \(x = \pm 1 \).
\[
f_1(x): f_1(-1) = 0 \neq f_1(1), \text{ so extended } f_1 \text{ is discontinuous.}
\]
\[
f_2(x): f_2(-1) = 1 \neq f_2(1); f_2'(-1) = 2 = f_2'(1); f_2''(-1) = -6 \neq f_2''(1) = 0.
\]
So extended \(f_2 \), and \(f_2' \) are continuous, \(\text{Extended } f_2'' \) is discontinuous.
\[
f_3(x): f_3(-1) = 2 \neq f_3(1); f_3'(-1) = 0 \neq f_3'(1) = 4, \text{ so extended } f_3 \text{ is discontinuous, Extended } f_3' \text{ discontinuous.}
\]
Thus, \(f_2 \) has the most rapidly converging Fourier series.

The convergent will be like \(\frac{1}{\alpha^2} \).
(2) (continued) (b) \(f(x) = x - x^2 \) vanishes at \(x = 0 \) and \(x = 1 \), and it has a maximum of \(\frac{1}{4} \) at \(x = \frac{1}{2} \). The sine series represents the periodic extension of the odd extension of \(f \).

The extended function is continuous and piecewise smooth, so the Fourier sine series converges everywhere to the limit of the extended function. In particular, it converges to \(x - x^2 \) everywhere on \([0, 2] \).

(c) The cosine series represents the periodic extension of the even extension of \(f \).

The extended function is continuous but the extended derivative is discontinuous. Therefore, the coefficients in the Fourier series will drop off like \(\frac{1}{n^2} \).

(3) Because of the homogeneous boundary conditions, there will be a non-trivial steady-state solution \(T_s(x) \). This satisfies \(\frac{d^2 T_s}{dx^2} = 0 \), \(T_s(0) = T_1 \), \(T_s(L) = T_2 \).

The equation gives \(T_s = Ax + B \). Then \(T_s(0) = T_1 \Rightarrow B = T_1 \), and \(T_s(L) = T_2 \Rightarrow A + T_1 = T_2 \Rightarrow A = (T_2 - T_1) \frac{L}{2} \), so \(T_s(x) = T_1 + \frac{T_2 - T_1}{L} x \).

We now set \(T(x,t) = T_s(x) + T'(x,t) \). The problem
(3) (continued) for $T' \text{ is then}$

$$\frac{\partial T'}{\partial t} = D \frac{\partial^2 T'}{\partial x^2}, \quad \text{at } t > 0, \quad T'(0,t) = 0, \quad T'(L,t) = 0, \quad \text{at } t > 0$$

$$T'(x,0) = T(x,0) - T_0(x) = \sum (T_3 \sin \left(\frac{3\pi x}{2L} \right) + T_5 \sin \left(\frac{5\pi x}{2L} \right))$$

$$\quad + \frac{T_3 \sin \left(\frac{3\pi x}{2L} \right)}{2} - \frac{3T_3}{4} \left(\frac{3\pi x}{2L} \right)$$

In class we used separation of variables and superposition to show that

$$T'(x,t) = \sum n \text{ e}^{-\frac{n^2 \pi^2 D t}{L^2}} \sin \left(\frac{n\pi x}{L} \right).$$

We impose the boundary conditions:

$$T'(x,0) = T_3 \sin \left(\frac{3\pi x}{2L} \right) + T_5 \sin \left(\frac{5\pi x}{2L} \right) = \sum n \sin \left(\frac{n\pi x}{L} \right)$$

$$\Rightarrow \quad (3 = T_3, \quad 5 = T_5, \quad \text{other } n = 0)$$

Then

$$T(x,t) = T'(x,t) + \frac{T_3}{L} x + \frac{T_5}{L} e^{-\frac{3\pi^2 D t}{L^2}} \sin \left(\frac{3\pi x}{2L} \right)$$

$$\quad + \frac{T_5}{L} e^{-\frac{5\pi^2 D t}{L^2}} \sin \left(\frac{5\pi x}{2L} \right)$$

(4) The diffusion time for a sphere of radius a with diffusivity D will be $\tau = \frac{a^2}{4D}$, where D is

(which was D^2 for the slab) is a dimensionless constant. The cooking time will be some multiple τ_c of the diffusion time τ: $\tau_c = \theta \tau_c D \approx \frac{\tau^2}{D}$

where $\tau = D/\theta$ is a dimensionless constant. If p is the density and m the mass, then $m = p \text{ (volume)}$ or $m = \frac{4}{3} \pi a^3 p$, so $\tau = (\frac{3}{4p})^{\frac{1}{3}} m^{\frac{1}{3}}$. Then

$$\tau_c = \frac{C}{\tau} \left(\frac{\tau^2}{D} \right)^{\frac{1}{3}} = \left[\frac{C}{D} \left(\frac{\frac{3}{4p}}{D} \right) \right]^{\frac{1}{3}} m^{\frac{1}{3}}.$$

So the cooking time goes like $m^{\frac{1}{3}}$.
