1. The 50-kg flywheel shown in Fig. 1 has radius of gyration \(k_O = 200 \text{ mm} \) about its center of mass. If it is subjected to a torque \(M = (9\theta^{1/2}) \text{ N·m} \), where \(\theta \) is in radians, determine its angular velocity when it has rotated 5 revolutions, starting from rest. (6 point)

![Figure 1: Problem 1](image1.png)

2. Determine the velocity of the 50-kg cylinder shown in Fig. 2 after it has descended a distance 2 m. Initially, the system is at rest. The reel has mass 25 kg and radius of gyration \(k_A = 125 \text{ mm} \) about its center of mass \(A \). (7 points)

![Figure 2: Problem 2](image2.png)

3. Gear \(B \) shown in Fig. 3 is rigidly attached to drum \(A \) and is supported by two small rollers at \(E \) and \(D \). Gear \(B \) is in mesh with gear \(C \) and is subjected to a torque \(M = 50 \text{ N·m} \). Determine the angular velocity of the drum after \(C \) has rotated 10 revolutions, starting from rest. Together, gear \(B \) and the drum have mass 100 kg, and their radius of gyration about their rotating axis is 250 mm. Gear \(C \) has mass 30 kg and radius of gyration about its rotating axis 125 mm. (10 points)

![Figure 3: Problem 3](image3.png)

4. If \(P = 200 \text{ N} \) and the 15-kg uniform slender rod shown in Fig. 4 starts from rest at \(\theta = 0^\circ \), determine the rod’s angular velocity at the instant just before \(\theta = 45^\circ \). (12 points)

![Figure 4: Problem 4](image4.png)
5. The tub of the mixer shown in Fig. 5 weighs 70 lb and has radius of gyration \(k_G = 1.3 \) ft about its center of gravity \(G \). If a constant torque \(M = 60 \) lb-ft is applied to the dumping wheel, determine the angular velocity of the tub when it has rotated \(\theta = 90^\circ \). Initially \(\theta = 0^\circ \) and the tub is at rest. (7 points)

![Figure 5: Problem 5](image1)

6. If the chain is released from rest from the position shown in Fig. 6, determine the angular velocity of the pulley after the end \(B \) has risen 2 ft. The pulley weighs 50 lb and has radius of gyration 0.375 ft about its axis of rotation. The chain weighs 6 lb/ft. (10 points)

![Figure 6: Problem 6](image2)